Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Immunother Cancer ; 12(4)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38631709

ABSTRACT

BACKGROUND: Engineered arenavirus vectors have recently been developed to leverage the body's immune system in the fight against chronic viral infections and cancer. Vectors based on Pichinde virus (artPICV) and lymphocytic choriomeningitis virus (artLCMV) encoding a non-oncogenic fusion protein of human papillomavirus (HPV)16 E6 and E7 are currently being tested in patients with HPV16+ cancer, showing a favorable safety and tolerability profile and unprecedented expansion of tumor-specific CD8+ T cells. Although the strong antigen-specific immune response elicited by artLCMV vectors has been demonstrated in several preclinical models, PICV-based vectors are much less characterized. METHODS: To advance our understanding of the immunobiology of these two vectors, we analyzed and compared their individual properties in preclinical in vivo and in vitro systems. Immunogenicity and antitumor effect of intratumoral or intravenous administration of both vectors, as well as combination with NKG2A blockade, were evaluated in naïve or TC-1 mouse tumor models. Flow cytometry, Nanostring, and histology analysis were performed to characterize the tumor microenvironment (TME) and T-cell infiltrate following treatment. RESULTS: Despite being phylogenetically distant, both vectors shared many properties, including preferential infection and activation of professional antigen-presenting cells, and induction of potent tumor-specific CD8+ T-cell responses. Systemic as well as localized treatment induced a proinflammatory shift in the TME, promoting the infiltration of inducible T cell costimulator (ICOS)+CD8+ T cells capable of mediating tumor regression and prolonging survival in a TC-1 mouse tumor model. Still, there was evidence of immunosuppression built-up over time, and increased expression of H2-T23 (ligand for NKG2A T cell inhibitory receptor) following treatment was identified as a potential contributing factor. NKG2A blockade improved the antitumor efficacy of artARENA vectors, suggesting a promising new combination approach. This demonstrates how detailed characterization of arenavirus vector-induced immune responses and TME modulation can inform novel combination therapies. CONCLUSIONS: The artARENA platform represents a strong therapeutic vaccine approach for the treatment of cancer. The induced antitumor immune response builds the backbone for novel combination therapies, which warrant further investigation.


Subject(s)
Arenavirus , Neoplasms , Papillomavirus Infections , Papillomavirus Vaccines , Humans , Mice , Animals , CD8-Positive T-Lymphocytes , Papillomavirus E7 Proteins , Arenavirus/metabolism , Neoplasms/therapy , Disease Models, Animal , Immunosuppression Therapy , Tumor Microenvironment
2.
J Immunother Cancer ; 12(4)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38631714

ABSTRACT

BACKGROUND: Lymphocytic choriomeningitis virus (LCMV) belongs to the Arenavirus family known for inducing strong cytotoxic T-cell responses in both mice and humans. LCMV has been engineered for the development of cancer immunotherapies, currently undergoing evaluation in phase I/II clinical trials. Initial findings have demonstrated safety and an exceptional ability to activate and expand tumor-specific T lymphocytes. Combination strategies to maximize the antitumor effectiveness of LCMV-based immunotherapies are being explored. METHODS: We assessed the antitumor therapeutic effects of intratumoral administration of polyinosinic:polycytidylic acid (poly(I:C)) and systemic vaccination using an LCMV-vector expressing non-oncogenic versions of the E6 and E7 antigens of human papillomavirus 16 (artLCMV-E7E6) in a bilateral model engrafting TC-1/A9 cells. This cell line, derived from the parental TC-1, exhibits low MHC class I expression and is highly immune-resistant. The mechanisms underlying the combination's efficacy were investigated through bulk RNA-seq, flow cytometry analyses of the tumor microenvironment, selective depletions using antibodies and clodronate liposomes, Batf3 deficient mice, and in vivo bioluminescence experiments. Finally, we assessed the antitumor effectiveness of the combination of artLCMV-E7E6 with BO-112, a GMP-grade poly(I:C) formulated in polyethyleneimine, currently under evaluation in clinical trials. RESULTS: Intratumoral injection of poly(I:C) enhanced the antitumor efficacy of artLCMV-E7E6 in both injected and non-injected tumor lesions. The combined treatment resulted in a significant delay in tumor growth and often complete eradication of several tumor lesions, leading to significantly improved survival compared with monotherapies. While intratumoral administration of poly(I:C) did not impact LCMV vector biodistribution or transgene expression, it significantly modified leucocyte infiltrates within the tumor microenvironment and amplified systemic efficacy through proinflammatory cytokines/chemokines such as CCL3, CCL5, CXCL10, TNF, IFNα, and IL12p70. Upregulation of MHC on tumor cells and a reconfiguration of the gene expression programs related to tumor vasculature, leucocyte migration, and the activation profile of tumor-infiltrating CD8+ T lymphocytes were observed. Indeed, the antitumor effect relied on the functions of CD8+ T lymphocytes and macrophages. The synergistic efficacy of the combination was further confirmed when BO-112 was included. CONCLUSION: Intratumoral injection of poly(I:C) sensitizes MHClow tumors to the antitumor effects of artLCMV-E7E6, resulting in a potent therapeutic synergy.


Subject(s)
Lymphocytic choriomeningitis virus , Neoplasms , Poly I-C , Animals , Humans , Mice , Injections, Intralesional , Tissue Distribution , Immunotherapy/methods , Adjuvants, Immunologic , Tumor Microenvironment
3.
Mol Ther ; 32(2): 426-439, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38058126

ABSTRACT

Harnessing the immune system to eradicate tumors requires identification and targeting of tumor antigens, including tumor-specific neoantigens and tumor-associated self-antigens. Tumor-associated antigens are subject to existing immune tolerance, which must be overcome by immunotherapies. Despite many novel immunotherapies reaching clinical trials, inducing self-antigen-specific immune responses remains challenging. Here, we systematically investigate viral-vector-based cancer vaccines encoding a tumor-associated self-antigen (TRP2) for the treatment of established melanomas in preclinical mouse models, alone or in combination with adoptive T cell therapy. We reveal that, unlike foreign antigens, tumor-associated antigens require replication of lymphocytic choriomeningitis virus (LCMV)-based vectors to break tolerance and induce effective antigen-specific CD8+ T cell responses. Immunization with a replicating LCMV vector leads to complete tumor rejection when combined with adoptive TRP2-specific T cell transfer. Importantly, immunization with replicating vectors leads to extended antigen persistence in secondary lymphoid organs, resulting in efficient T cell priming, which renders previously "cold" tumors open to immune infiltration and reprograms the tumor microenvironment to "hot." Our findings have important implications for the design of next-generation immunotherapies targeting solid cancers utilizing viral vectors and adoptive cell transfer.


Subject(s)
Cancer Vaccines , Neoplasms , Mice , Animals , Lymphocytic choriomeningitis virus/genetics , CD8-Positive T-Lymphocytes , Neoplasms/drug therapy , Antigens, Neoplasm/genetics , Autoantigens , Tumor Microenvironment
4.
J Infect Dis ; 225(8): 1399-1410, 2022 04 19.
Article in English | MEDLINE | ID: mdl-32313928

ABSTRACT

BACKGROUND: A vaccine (HB-101) consisting of 2 nonreplicating lymphocytic choriomeningitis virus (LCMV) vectors expressing the human cytomegalovirus antigens glycoprotein B (gB) and the 65-kD phosphoprotein (pp65), respectively, is in development to prevent cytomegalovirus infection. METHODS: HB-101 was tested in cytomegalovirus-naive, healthy adults in a randomized, double-blind, placebo-controlled, dose-escalation Phase I trial. Fifty-four subjects received low, medium, or high dose of HB-101 or placebo by intramuscular administration at Month 0, 1, and 3. Safety and immunogenicity were the respective primary and secondary endpoints. Subjects were followed for 12 months after the initial immunization. RESULTS: Vaccination was associated with transient mild to moderate adverse events. HB-101 administration induced dose-dependent gB- and pp65-specific cellular responses, dominated by pp65-specific CD8 T cells, a high fraction of which were polyfunctional. Two administrations were sufficient to elicit dose-dependent gB-binding and cytomegalovirus-neutralizing antibodies (Abs). Cytomegalovirus-specific immune responses were boosted after each administration. Only 1 of 42 vaccine recipients mounted a transient LCMV vector-neutralizing Ab response. CONCLUSIONS: HB-101 was well tolerated and induced cytomegalovirus-specific polyfunctional CD8 T-cell and neutralizing Ab responses in the majority of subjects. Lack of vector-neutralizing Ab responses should facilitate booster vaccinations. These results justify further clinical evaluation of this vaccine candidate.


Subject(s)
Cytomegalovirus Vaccines , Vaccines , Adult , Antibodies, Neutralizing , Antibodies, Viral , Cytomegalovirus/genetics , Humans , Immunization, Secondary , Lymphocytic choriomeningitis virus/genetics
5.
Front Oncol ; 11: 732166, 2021.
Article in English | MEDLINE | ID: mdl-34722273

ABSTRACT

Engineered viral vectors represent a promising strategy to trigger antigen-specific antitumor T cell responses. Arenaviruses have been widely studied because of their ability to elicit potent and protective T cell responses. Here, we provide an overview of a novel intravenously administered, replication-competent, non-lytic arenavirus-based vector technology that delivers tumor antigens to induce antigen-specific anti-cancer T cell responses. Preclinical studies in mice and cell culture experiments with human peripheral blood mononuclear cells demonstrate that arenavirus vectors preferentially infect antigen-presenting cells. This, in conjunction with a non-lytic functional activation of the infected antigen-presenting cells, leads to a robust antigen-specific CD8+ T cell response. T cell migration to, and infiltration of, the tumor microenvironment has been demonstrated in various preclinical tumor models with vectors encoding self- and non-self-antigens. The available data also suggest that arenavirus-based vector therapy can induce immunological memory protecting from tumor rechallenge. Based on promising preclinical data, a phase 1/2 clinical trial was initiated and is currently ongoing to test the activity and safety of arenavirus vectors, HB-201 and HB-202, created using lymphocytic choriomeningitis virus and Pichinde virus, respectively. Both vectors have been engineered to deliver non-oncogenic versions of the human papilloma virus 16 (HPV16) antigens E7 and E6 and will be injected intravenously with or without an initial intratumoral dose. This dose escalation/expansion study is being conducted in patients with recurrent or metastatic HPV16+ cancers. Promising preliminary data from this ongoing clinical study have been reported. Immunogenicity data from several patients demonstrate that a single injection of HB-201 or HB-202 monotherapy is highly immunogenic, as evidenced by an increase in inflammatory cytokines/chemokines and the expansion of antigen-specific CD8+ T cell responses. This response can be further enhanced by alternating injections of HB-202 and HB-201, which has resulted in frequencies of circulating HPV16 E7/E6-specific CD8+ T cells of up to 40% of the total CD8+ T cell compartment in peripheral blood in analyses to date. Treatment with intravenous administration also resulted in a disease control rate of 73% among 11 evaluable patients with head and neck cancer dosed every three weeks, including 2 patients with a partial response.

6.
Nat Commun ; 12(1): 4734, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34354077

ABSTRACT

The tumor microenvironment (TME) is a complex amalgam of tumor cells, immune cells, endothelial cells and fibroblastic stromal cells (FSC). Cancer-associated fibroblasts are generally seen as tumor-promoting entity. However, it is conceivable that particular FSC populations within the TME contribute to immune-mediated tumor control. Here, we show that intratumoral treatment of mice with a recombinant lymphocytic choriomeningitis virus-based vaccine vector expressing a melanocyte differentiation antigen resulted in T cell-dependent long-term control of melanomas. Using single-cell RNA-seq analysis, we demonstrate that viral vector-mediated transduction reprogrammed and activated a Cxcl13-expressing FSC subset that show a pronounced immunostimulatory signature and increased expression of the inflammatory cytokine IL-33. Ablation of Il33 gene expression in Cxcl13-Cre-positive FSCs reduces the functionality of intratumoral T cells and unleashes tumor growth. Thus, reprogramming of FSCs by a self-antigen-expressing viral vector in the TME is critical for curative melanoma treatment by locally sustaining the activity of tumor-specific T cells.


Subject(s)
Melanoma, Experimental/therapy , Animals , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Cancer Vaccines/genetics , Cancer Vaccines/immunology , Cancer-Associated Fibroblasts/immunology , Cancer-Associated Fibroblasts/pathology , Cellular Reprogramming Techniques/methods , Chemokine CXCL13/genetics , Chemokine CXCL13/immunology , Female , Genetic Vectors , Interleukin-33/deficiency , Interleukin-33/genetics , Interleukin-33/immunology , Intramolecular Oxidoreductases/genetics , Intramolecular Oxidoreductases/immunology , Lymphocytic choriomeningitis virus/genetics , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Stromal Cells/immunology , Stromal Cells/pathology , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Tumor Microenvironment/immunology
7.
Cell Rep Med ; 2(3): 100209, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33763654

ABSTRACT

Therapeutic vaccination regimens inducing clinically effective tumor-specific CD8+ T lymphocyte (CTL) responses are an unmet medical need. We engineer two distantly related arenaviruses, Pichinde virus and lymphocytic choriomeningitis virus, for therapeutic cancer vaccination. In mice, life-replicating vector formats of these two viruses delivering a self-antigen in a heterologous prime-boost regimen induce tumor-specific CTL responses up to 50% of the circulating CD8 T cell pool. This CTL attack eliminates established solid tumors in a significant proportion of animals, accompanied by protection against tumor rechallenge. The magnitude of CTL responses is alarmin driven and requires combining two genealogically distantly related arenaviruses. Vector-neutralizing antibodies do not inhibit booster immunizations by the same vector or by closely related vectors. Rather, CTL immunodominance hierarchies favor vector backbone-targeted responses at the expense of self-reactive CTLs. These findings establish an arenavirus-based immunotherapy regimen that allows reshuffling of immunodominance hierarchies and breaking self-directed tolerance for efficient tumor control.


Subject(s)
Cancer Vaccines/administration & dosage , Immunotherapy/methods , Lymphocytic choriomeningitis virus/immunology , Mastocytoma/therapy , Pichinde virus/immunology , T-Lymphocytes, Cytotoxic/immunology , Alarmins/genetics , Alarmins/immunology , Animals , Antibodies, Neutralizing/pharmacology , Cancer Vaccines/genetics , Cancer Vaccines/immunology , Female , Gene Expression , Genetic Engineering/methods , Genetic Vectors/classification , Genetic Vectors/immunology , Guinea Pigs , Immunization, Secondary , Lymphocytic choriomeningitis virus/classification , Lymphocytic choriomeningitis virus/genetics , Mastocytoma/genetics , Mastocytoma/immunology , Mastocytoma/mortality , Mice , Mice, Inbred C57BL , Phylogeny , Pichinde virus/classification , Pichinde virus/genetics , Self Tolerance , Survival Analysis , Vaccination/methods
8.
Oncoimmunology ; 9(1): 1809960, 2020 09 15.
Article in English | MEDLINE | ID: mdl-33457095

ABSTRACT

Infection with human papillomavirus (HPV) is associated with a variety of cancer types and limited therapy options. Therapeutic cancer vaccines targeting the HPV16 oncoproteins E6 and E7 have recently been extensively explored as a promising immunotherapy approach to drive durable antitumor T cell immunity and induce effective tumor control. With the goal to achieve potent and lasting antitumor T cell responses, we generated a novel lymphocytic choriomeningitis virus (LCMV)-based vaccine, TT1-E7E6, targeting HPV16 E6 and E7. This replication-competent vector was stably attenuated using a three-segmented viral genome packaging strategy. Compared to wild-type LCMV, TT1-E7E6 demonstrated significantly reduced viremia and CNS immunopathology. Intravenous vaccination of mice with TT1-E7E6 induced robust expansion of HPV16-specific CD8+ T cells producing IFN-γ, TNF-α and IL-2. In the HPV16 E6 and E7-expressing TC-1 tumor model, mice immunized with TT1-E7E6 showed significantly delayed tumor growth or complete tumor clearance accompanied with prolonged survival. Tumor control by TT1-E7E6 was also achieved in established large-sized tumors in this model. Furthermore, a combination of TT1-E7E6 with anti-PD-1 therapy led to enhanced antitumor efficacy with complete tumor regression in the majority of tumor-bearing mice that were resistant to anti-PD-1 treatment alone. TT1-E7E6 vector itself did not exhibit oncolytic properties in TC-1 cells, while the antitumor effect was associated with the accumulation of HPV16-specific CD8+ T cells with reduced PD-1 expression in the tumor tissues. Together, our results suggest that TT1-E7E6 is a promising therapeutic vaccine for HPV-positive cancers.


Subject(s)
Papillomavirus Vaccines , Uterine Cervical Neoplasms , Animals , CD8-Positive T-Lymphocytes , Female , Humans , Immunotherapy, Active , Lymphocytic choriomeningitis virus , Mice , Mice, Inbred C57BL , Papillomavirus E7 Proteins/genetics , Vaccines, Attenuated
9.
Clin Vaccine Immunol ; 24(1)2017 Jan.
Article in English | MEDLINE | ID: mdl-27795301

ABSTRACT

Subunit vaccines for prevention of congenital cytomegalovirus (CMV) infection based on glycoprotein B (gB) and pp65 are in clinical trials, but it is unclear whether simultaneous vaccination with both antigens enhances protection. We undertook evaluation of a novel bivalent vaccine based on nonreplicating lymphocytic choriomeningitis virus (rLCMV) vectors expressing a cytoplasmic tail-deleted gB [gB(dCt)] and full-length pp65 from human CMV in mice. Immunization with the gB(dCt) vector alone elicited a comparable gB-binding antibody response and a superior neutralizing response to that elicited by adjuvanted subunit gB. Immunization with the pp65 vector alone elicited robust T cell responses. Comparable immunogenicity of the combined gB(dCt) and pp65 vectors with the individual monovalent formulations was demonstrated. To demonstrate proof of principle for a bivalent rLCMV-based HCMV vaccine, the congenital guinea pig cytomegalovirus (GPCMV) infection model was used to compare rLCMV vectors encoding homologs of pp65 (GP83) and gB(dCt), alone and in combination versus Freund's adjuvanted recombinant gB. Both vectors elicited significant immune responses, and no loss of gB immunogenicity was noted with the bivalent formulation. Combined vaccination with rLCMV-vectored GPCMV gB(dCt) and pp65 (GP83) conferred better protection against maternal viremia than subunit or either monovalent rLCMV vaccine. The bivalent vaccine also was significantly more effective in reducing pup mortality than the monovalent vaccines. In summary, bivalent vaccines with rLCMV vectors expressing gB and pp65 elicited potent humoral and cellular responses and conferred protection in the GPCMV model. Further clinical trials of LCMV-vectored HCMV vaccines are warranted.


Subject(s)
Cytomegalovirus Infections/prevention & control , Cytomegalovirus Vaccines/immunology , Drug Carriers , Lymphocytic choriomeningitis virus/genetics , Phosphoproteins/immunology , Viral Envelope Proteins/immunology , Viral Matrix Proteins/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antigens, Viral/genetics , Antigens, Viral/immunology , Cytomegalovirus Infections/congenital , Cytomegalovirus Vaccines/administration & dosage , Disease Models, Animal , Female , Guinea Pigs , Mice, Inbred C57BL , Phosphoproteins/genetics , T-Lymphocytes/immunology , Vaccines, Combined/administration & dosage , Vaccines, Combined/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Viral Envelope Proteins/genetics , Viral Matrix Proteins/genetics
10.
Vaccine ; 30(6): 1165-9, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22178103

ABSTRACT

Tick-borne encephalitis virus (TBEV) is a flavivirus of wide geographic distribution and the causative agent of tick-borne encephalitis (TBE), an infection of the central nervous system. TBE has the highest incidence rate in Russia, where locally produced as well as Western European vaccines for the prevention of TBE are available. The Western European vaccines are based on TBE viruses that belong to the European subtype, while the Russian vaccines are based on Far Eastern subtype viruses. The question of to which extent vaccination with a vaccine based on the European subtype is effective in protecting against the heterologous Far Eastern virus subtype - and vice versa - has not been answered conclusively. Here we immunized mice with TBE vaccines based on European and Far Eastern subtype viruses, and used an unbiased hybrid virus test system to determine cross-neutralizing antibody titers and cross-protective efficacy. All vaccines tested elicited cross-protective responses against the heterologous strains, similar to those induced against the respective homologous vaccine strains. These data, therefore, fully support the use of TBE vaccines in geographic regions where virus subtypes heterologous to the vaccine strains are prevalent.


Subject(s)
Cross Protection , Encephalitis Viruses, Tick-Borne/immunology , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Female , Mice , Mice, Inbred BALB C , Viral Vaccines/administration & dosage
11.
J Infect Dis ; 203(11): 1556-64, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21592984

ABSTRACT

After vaccination of humans with tick-borne encephalitis virus (TBEV) vaccine, the extent of cross-neutralization between viruses of the European, Far Eastern, and Siberian subtypes of TBEV and Omsk hemorrhagic fever virus (OHFV) was analyzed. Hybrid viruses that encode the TBEV surface proteins for representative viruses within all subtypes, and OHFV, were constructed using the West Nile virus (WNV) backbone as vector. These viruses allow for unbiased head-to-head comparison in neutralization assays because they exhibit the antigenic characteristics of the TBEV strains from which the surface proteins were derived and showed equivalent biologic properties in cell culture. Human serum samples derived from a TBEV vaccine trial were analyzed and revealed comparable neutralizing antibody titers against European, Far Eastern, and Siberian subtype viruses, indicating equally potent cross-protection against these TBEV strains and a somewhat reduced but still protective neutralization capacity against more distantly related viruses, such as OHFV.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cross Reactions/immunology , Encephalitis Viruses, Tick-Borne/immunology , Viral Vaccines/immunology , Adolescent , Adult , Aged , Amino Acid Sequence , Analysis of Variance , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/biosynthesis , Antibodies, Viral/blood , Cell Line, Tumor , Chlorocebus aethiops , Cloning, Molecular , Encephalitis Viruses, Tick-Borne/genetics , Encephalitis Viruses, Tick-Borne/growth & development , Encephalitis, Tick-Borne/blood , Encephalitis, Tick-Borne/immunology , Encephalitis, Tick-Borne/prevention & control , Humans , Kinetics , Middle Aged , Molecular Sequence Data , Neutralization Tests , Phenotype , Sequence Alignment , Vero Cells , Viral Vaccines/genetics , Virus Cultivation , West Nile virus/genetics , Young Adult
12.
PLoS One ; 6(1): e16247, 2011 Jan 24.
Article in English | MEDLINE | ID: mdl-21283631

ABSTRACT

BACKGROUND: New highly pathogenic H5N1 influenza viruses are continuing to evolve with a potential threat for an influenza pandemic. So far, the H5N1 influenza viruses have not widely circulated in humans and therefore constitute a high risk for the non immune population. The aim of this study was to evaluate the cross-protective potential of the hemagglutinins of five H5N1 strains of divergent clades using a live attenuated modified vaccinia Ankara (MVA) vector vaccine. METHODOLOGY/PRINCIPAL FINDINGS: The replication-deficient MVA virus was used to express influenza hemagglutinin (HA) proteins. Specifically, recombinant MVA viruses expressing the HA genes of the clade 1 virus A/Vietnam/1203/2004 (VN/1203), the clade 2.1.3 virus A/Indonesia/5/2005 (IN5/05), the clade 2.2 viruses A/turkey/Turkey/1/2005 (TT01/05) and A/chicken/Egypt/3/2006 (CE/06), and the clade 2.3.4 virus A/Anhui/1/2005 (AH1/05) were constructed. These experimental live vaccines were assessed in a lethal mouse model. Mice vaccinated with the VN/1203 hemagglutinin-expressing MVA induced excellent protection against all the above mentioned clades. Also mice vaccinated with the IN5/05 HA expressing MVA induced substantial protection against homologous and heterologous AH1/05 challenge. After vaccination with the CE/06 HA expressing MVA, mice were fully protected against clade 2.2 challenge and partially protected against challenge of other clades. Mice vaccinated with AH1/05 HA expressing MVA vectors were only partially protected against homologous and heterologous challenge. The live vaccines induced substantial amounts of neutralizing antibodies, mainly directed against the homologous challenge virus, and high levels of HA-specific IFN-γ secreting CD4 and CD8 T-cells against epitopes conserved among the H5 clades and subclades. CONCLUSIONS/SIGNIFICANCE: The highest level of cross-protection was induced by the HA derived from the VN/1203 strain, suggesting that pandemic H5 vaccines utilizing MVA vector technology, should be based on the VN/1203 hemagglutinin. Furthermore, the recombinant MVA-HA-VN, as characterized in the present study, would be a promising candidate for such a vaccine.


Subject(s)
Cross Protection/genetics , Genetic Vectors , Hemagglutinins/biosynthesis , Influenza A Virus, H5N1 Subtype/chemistry , Vaccines/immunology , Vaccinia virus/genetics , Animals , Humans , Mice , Species Specificity , Vaccination
13.
Vaccine ; 28(19): 3318-24, 2010 Apr 26.
Article in English | MEDLINE | ID: mdl-20211218

ABSTRACT

A cDNA comprising the complete genome of West Nile Virus (WNV) was generated by chemical synthesis using published sequence data, independent of any preformed viral components. The synthetic WNV, produced by transfection of in vitro transcribed RNA into cell culture, exhibited undistinguishable biological properties compared to the corresponding animal-derived wild-type virus. No differences were found concerning viral growth in mammalian and insect cell lines and concerning expression of viral proteins in cells. There were also no significant differences in virulence in mice following intranasal challenge. After immunizations of mice with experimental vaccines derived from the synthetic and wild-type viruses, protection from lethal challenge was achieved with similar amounts of antigen. Both vaccine preparations also induced comparable levels of neutralizing antibodies in mice. In addition, the synthetic approach turned out to be very accurate, since the rescued WNV genome contained no undesired mutations. Thus, the first flavivirus based on chemical gene synthesis was indistinguishable from the parent virus. This demonstrates that virus isolates from animal sources are dispensable to derive seed viruses for vaccine production or research.


Subject(s)
DNA, Complementary/genetics , Viral Vaccines/immunology , West Nile Fever/prevention & control , West Nile virus/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Cell Line , Chlorocebus aethiops , Cricetinae , Female , Genome, Viral , Insecta , Mice , Mice, Inbred BALB C , RNA, Viral/genetics , Survival Analysis , Transfection , Vaccines, Inactivated/genetics , Vaccines, Inactivated/immunology , Viral Vaccines/genetics , Virulence , West Nile virus/genetics , West Nile virus/pathogenicity
14.
Virology ; 377(2): 419-30, 2008 Aug 01.
Article in English | MEDLINE | ID: mdl-18533218

ABSTRACT

The 3'-noncoding region (3'-NCR) of the flavivirus genome includes a variable region that tolerates the insertion of heterologous genetic information. Natural isolates of tick-borne encephalitis virus (TBEV) have particularly long variable regions, which, for some strains, include an internal poly(A) tract. We constructed luciferase reporter replicons of TBEV to analyze the impact of various manipulations of the 3'-NCR on viral RNA translation and replication. The choice of the reporter gene, its position and processing within the viral polyprotein, and the choice of standards were found to be important for obtaining a sensitive and reliable test system. We observed that truncation or complete removal of the internal poly(A) tract, or even the entire variable region, had no significant impact on translation and replication of the RNA in mammalian cell culture. Substitution of the variable region with foreign genetic elements impaired RNA replication to various degrees but generally had no influence on viral translation. Expression cassettes driven by an IRES element inhibited RNA replication more strongly than did repetitive protein-binding elements derived from a bacteriophage, even when the ligand that binds these elements was co-expressed in the cells. Previously identified mutations in the IRES partially relieved this inhibition when introduced into the reporter replicon but provided no evidence for intramolecular competition for translation factors. Impairment of replication appeared to depend more on the type of foreign insert than on its length. These results provide a rational basis for the construction of TBEV-based vectors or vaccines as well as molecular tools for studying flavivirus replication.


Subject(s)
3' Untranslated Regions/pharmacology , Encephalitis Viruses, Tick-Borne/genetics , Genes, Reporter/drug effects , Genetic Vectors/physiology , Protein Biosynthesis/drug effects , RNA, Viral/pharmacology , Virus Replication/drug effects , 3' Untranslated Regions/genetics , Encephalitis Viruses, Tick-Borne/physiology , Genetic Vectors/genetics , Nucleic Acid Conformation , Protein Biosynthesis/physiology , Replicon , Virus Replication/physiology
15.
J Virol ; 81(22): 12619-29, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17855533

ABSTRACT

Flaviviruses have a positive-stranded RNA genome, which simultaneously serves as an mRNA for translation of the viral proteins. All of the structural and nonstructural proteins are translated from a cap-dependent cistron as a single polyprotein precursor. In an earlier study (K. K. Orlinger, V. M. Hoenninger, R. M. Kofler, and C. W. Mandl, J. Virol. 80:12197-12208, 2006), it was demonstrated that an artificial bicistronic flavivirus genome, TBEV-bc, in which the region coding for the viral surface glycoproteins prM and E from tick-borne encephalitis virus (TBEV) had been removed from its natural context and inserted into the 3' noncoding region under the control of an internal ribosome entry site (IRES) from encephalomyocarditis virus (EMCV) produces viable, infectious virus when cells are transfected with this RNA. The rates of RNA replication and infectious particle formation were significantly lower with TBEV-bc, however, than with wild-type TBEV. In this study, we have identified two types of mutations, selected by passage in BHK-21 cells, that enhance the growth properties of TBEV-bc. The first type occurred in the E protein, and these most likely increase the affinity of the virus for heparan sulfate on the cell surface. The second type occurred in the inserted EMCV IRES, in the oligo(A) loop of the J-K stem-loop structure, a binding site for the eukaryotic translation initiation factor 4G. These included single-nucleotide substitutions as well as insertions of additional adenines in this loop. An A-to-C substitution in the oligo(A) loop decreased the efficiency of the IRES itself but nevertheless resulted in improved rates of virus particle formation and overall replication efficiency. These results demonstrate the need for proper balance in the competition for free template RNA between the viral RNA replication machinery and the cellular translation machinery at the two different start sites and also identify specific target sites for the improvement of bicistronic flavivirus expression vectors.


Subject(s)
Encephalitis Viruses, Tick-Borne/physiology , Genetic Vectors/physiology , RNA, Viral/genetics , Ribosomes/virology , Viral Envelope Proteins/genetics , Virus Replication/genetics , Animals , Base Sequence , Brain/virology , Cricetinae , Encephalitis Viruses, Tick-Borne/genetics , Flavivirus/genetics , Flavivirus/physiology , Genes, Reporter , Genetic Vectors/genetics , Genome, Viral , Mice , Molecular Sequence Data , Mutation , Protein Biosynthesis , Virus Internalization
16.
J Virol ; 80(24): 12197-208, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17035331

ABSTRACT

Flaviviruses have a monopartite positive-stranded RNA genome, which serves as the sole mRNA for protein translation. Cap-dependent translation produces a polyprotein precursor that is co- and posttranslationally processed by proteases to yield the final protein products. In this study, using tick-borne encephalitis virus (TBEV), we constructed an artificial bicistronic flavivirus genome (TBEV-bc) in which the capsid protein and the nonstructural proteins were still encoded in the cap cistron but the coding region for the surface proteins prM and E was moved to a separate translation unit under the control of an internal ribosome entry site element inserted into the 3' noncoding region. Mutant TBEV-bc was shown to produce particles that packaged the bicistronic RNA genome and were infectious for BHK-21 cells and mice. Compared to wild-type controls, however, TBEV-bc was less efficient in both RNA replication and infectious particle formation. We took advantage of the separate expression of the E protein in this system to investigate the role in viral assembly of the second transmembrane region of protein E (E-TM2), a second copy of which was retained in the cap cistron to fulfill its other role as an internal signal sequence in the polyprotein. Deletion analysis and replacement of the entire TBEV E-TM2 region with its counterpart from another flavivirus revealed that this element, apart from its role as a signal sequence, is important for virion formation.


Subject(s)
Encephalitis Viruses, Tick-Borne/genetics , Genome, Viral/genetics , Viral Envelope Proteins/metabolism , Virus Assembly/physiology , Amino Acid Sequence , Animals , Base Sequence , Cell Line , Cloning, Molecular , DNA Primers , Encephalitis Viruses, Tick-Borne/pathogenicity , Flow Cytometry , Mice , Molecular Sequence Data , Plasmids/genetics , Protein Structure, Tertiary/genetics , Signal Transduction/genetics , Viral Envelope Proteins/genetics , Virulence , Virus Assembly/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...